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Abstract

Structural relaxation for simple and more complex thermal histories is described by a phenomeno-
logical model based on a non-exponential relaxation function, the reduced-time concept and the non-
linear structural contribution to the relaxation time. The history, development of experimental tech-
niques and data analysis is described. It is shown that the volume and enthalpy relaxation response
can conveniently be compared on the basis of a fictive relaxation rate, Rf. A simple equation relating
Rf and the parameters of the phenomenological model is given. The calculated data for moderate de-
partures from equilibrium are in good agreement with our experiments and data previously reported
in the literature.
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Introduction

The non-equilibrium thermodynamic state of an amorphous material was first recog-
nized nearly 70 years ago by Simon [1]. When an equilibrium liquid is cooled, a
transformation to a glass occurs at a temperature Tg when the molecular rearrange-
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Fig. 1 Schematic illustration of the volume changes of an amorphous material sub-
jected to a temperature jump from equilibrium at temperature T0
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ments slow down to a such extent that they require time scale considerably longer
than corresponds to an experimental time scale. The structure of such an amorphous
material becomes ‘frozen-in’ and the glass will not be at equilibrium. Such a non-
equilibrium state is obviously unstable and the amorphous material will search for an
equilibrium structure. The approach of the structure towards equilibrium is usually
called structural relaxation and this has been studied extensively, both for practical
reasons and for a better theoretical understanding of the glass transition phenomena
[2, 3].

If an amorphous material is equilibrated at temperature T0 (usually near Tg) and
then suddenly cooled to temperature T, the volume will change as shown in Fig. 1.
The isothermal volume relaxation response is usually described [3] as the relative de-
parture of the actual volume V from the equilibrium volumeV∞ , i.e. δV=(V–V∞)/V∞ . An
alternative definition for the volume relaxation response is:

Φ= −
−

=∞

∞

V V

V V0
0

δ
δ

V

V

(1)

The initial departure from equilibrium,δV
0 , can be related to the magnitude of the

temperature jump ∆T=T0–T and is defined as δV
0 =∆α·∆T, where ∆α is the difference

between the volume thermal expansion coefficient of the equilibrium undercooled
liquid and the volume thermal expansion coefficient of the solid. Similar expressions
can be also written for the isothermal enthalpy relaxation.

Structural relaxation experiments are complicated by the fact that the structure
of a glass is both time and temperature dependent. An analysis of such experimental
data is difficult due to the non-linear character of the relaxation process as well as due
to the memory effect. This paper describes the basic phenomenology and typical ex-
periments. The volume and enthalpy relaxation data are analyzed and compared.
Some thoughts for future research are given.

A phenomenological model of structural relaxation

Non-exponentiality and the reduced-time concept

It is well known that the normalized relaxation function Φ(t), obtained from volume
or enthalpy data, is non-exponential. Such behavior can be explained by assuming a
distribution of relaxation times. The relevant model of Kovacs, Hutchinson, Aklonis
and Ramos [4] (referred to as KAHR) uses a discrete distribution. A continuous dis-
tribution is used in the ‘stretched’ exponential expression introduced by Moynihan et
al. [5]:

Φ( ) exp[ ( / ) ]t t= − τ β (2)

where τ is a characteristic time and the exponent β is inversely proportional to the
width of corresponding distribution of relaxation times (0<β≤1).
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Equation (2) describes experimental data well for small temperature jumps
(∆T<0.5 K). At larger departures from equilibrium, however, the Φ(t) function be-
comes non-linear which means that the kinetics of structural relaxation do not scale
linearly with the magnitude of the departure from equilibrium. Therefore, the re-
sponses expressed by Eq. (2), corresponding to different temperature jumps ∆T, can-
not be superimposed on a single master curve by any linear transformation in time.
This behavior was explained by Tool [6] by assuming that τ depends on the instanta-
neous structure of an amorphous material characterized by the fictive temperature, Tf

(defined as shown in Fig. 1), as well as on temperature T. Later it was shown by
Narayanaswamy [7], in his excellent paper, that linearity can be restored by introduc-
ing the reduced-time integral defined by

ξ
τ

=∫
d

T

T

0

t

T T( , )f

(3)

The fictive temperature then can be expressed according to the Boltzmann su-
perposition principle as:

T t T Tf d( ) [ exp( )]= + − −∫0 1 ξ β

T

T

0

(4)

Both the Boltzmann and the reduced-time integral in Eq. (4) must be evaluated
numerically, e.g. by the methods proposed by Mazurin [8], Moynihan et al. [5],
Hodge and Berens [9] and Scherer [2] (Numerical simulation of structural relax-
ation).

Non-linearity expressions

The most frequently used expression for τ(T,Tf) in Eq. (3) is the Tool–Narayanas-
wamy formulation [7] as modified later by Moynihan et al. [10] (referred to as
TNM):

τ ( , ) exp ( )
* *

T T A x
h

RT
x

h

RT
f

f

= + −









∆ ∆
1 (5)

where A is the pre-exponential constant, x is the non-linearity parameter (0<x≤1) and
∆h* is the effective activation energy, which is essentially the same as that determined
from viscosity data above Tg for most inorganic amorphous materials [11]. An equiv-
alent, but much less-used, expression for τ(T,Tf) is the KAHR equation [4]:

τ τ θ θδ/ α( , ) exp[ ( ) ( ) ]T T T T xf r= − − − − ⋅0 1 ∆ (6)

where τ0 is the value of τ at equilibrium at the reference temperature Tr and θ is a form
of the effective activation energy. The relation between θ and the TNM parameter,
∆h*, is derived by equating the temperature derivative of τ in the equilibrium and as-
suming that T≅ Tf≅ Tg:
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θ= ∆h

RT
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g

2
(7)

The value of θ is a characteristic constant for an amorphous material [11], gener-
ally being close to 1 for polymeric materials and in the range 0.1–0.3 for inorganic
glasses. It should be pointed out that Eqs (5) and (6) are purely empirical. Equation
(5) has been extensively tested on many amorphous materials and was found to de-
scribe the structural relaxation below Tg quite well [2].

Another formulation of non-linearity is based on the Adam–Gibbs equation [12]
which assumes that the configurational entropy determines the average relaxation
time. The functional form for τ(T,Tf) is determined by the temperature dependence of
the excess heat capacity used to calculate the configurational entropy. A non-linear
Adam–Gibbs equation was applied for the first time to enthalpy relaxation by Scherer
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Fig. 2 The changes of the fictive temperature calculated using Eq. (4) during cooling
(–10 K min–1), annealing (Ta=410 K, ta=10 days) and reheating (10 K min–1) of
an amorphous material characterized by the following TNM parameters:
∆h*/R=40 kK, ln(A/s–1)= –85, x=0.5, β=0.7. The broken line corresponds to re-
heating without annealing

Fig. 3 The normalized reheating heat capacity curves calculated using Eq. (9) for data
shown in Fig. 2



[13]. Some time later, Hodge [14] used the hyperbolic form for ∆Cp and obtained a
simple non-linear expression (referred to as AGH):

τ ( , ) exp
( / )

T T A
B

T T T
f

f

=
−









0

21
(8)

where B is a constant related to the potential barrier hindering rearrangement, and T2

is the temperature at which the configurational entropy extrapolates to zero; i.e. it is
conceptually identical with the thermodynamic Kauzmann temperature.

Numerical simulation of structural relaxation

Numerical simulation of structural relaxation is based on the Boltzmann superposi-
tion of responses that have been linearized using the reduced-time method of
Narayanaswamy [7]. This method was first applied to thermal histories that included
rate cooling and heating in 1975 by Mazurin et al. [8] and one year later by Moynihan
et al. [5]. The evolution of the fictive temperature is calculated using Eq. (4). The
zero time in the reduced-time integral is set when the amorphous material first de-
parts from equilibrium. Starting the reduced-time ‘clock’ later can produce artifacts,
arising from the memory effect associated with non-exponentiality. The relaxation
from a particular state is determined not only by this state, but also by how it was
reached [2]. Numerical evaluation of the Boltzmann integral is accomplished by ex-
pressing any thermal history T(t) as a series of temperature jumps that are small
enough to ensure a linear response (usually 0.2 K). During annealing, the upper limit
of the Boltzmann integral is fixed but the reduced-time integral summation continues.

Figure 2 shows the changes of Tf calculated during cooling (–10 K min–1), an-
nealing (Ta=410 K, ta=10 days) and reheating (10 K min–1) of an amorphous material
characterized by the following TNM parameters: ∆h*/R=40 kK, ln(A/s–1)= –85,
x=0.5, β=0.7. A dimensionless heat capacity is defined as [10, 11]:

C
T

T
p

N fd

d
= (9)

which can be calculated by differentiating the Tf(T) dependence. Figure 3 shows the
heat capacity curves calculated using Eq. (9) for reheating data in Fig. 2. In this case
the relaxation behavior is characterized by a well known overshoot, superimposed on
the glass transition heat capacity step. The intensity of this overshoot rapidly in-
creases with annealing time. Quite different behavior is illustrated in Fig. 4 where the
reheating data of an annealed amorphous material, characterized by a different set of
TNM parameters: ∆h*/R=100 kK, ln(A/s–1)= –275, x=0.5, β=0.3, are shown. There is
a small overshoot which remains unchanged with annealing time. However, the most
important feature is a time dependent, sub–Tg peak, strongly affected by annealing.
These sub–Tg peaks are more pronounced for low β and x parameters [9] and they
practically disappear for relatively narrow distributions of relaxation times (Fig. 3). If
the amorphous material is rapidly quenched and then slowly reheated, there is an exo-
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thermic dip in the heat capacity observed just before the heat capacity step at Tg.
These dips are shown in Fig. 5 (the TNM parameters are the same as in Fig. 2) and are
due to partial relaxation taking place during relatively slow reheating.

The TMN model, incorporating the distribution of relaxation times and the re-
duced-time concept, successfully predicts practically all experimentally observed
phenomena. It has been extensively tested and shown to provide a satisfactory repre-
sentation of the structural relaxation behavior of many amorphous materials [2].
Some experimental results are discussed in the following Section.

J. Therm. Anal. Cal., 60, 2000

980 MÁLEK, SHÁNÌLOVA: STRUCTURAL RELAXATION IN AMORPHOUS SOLIDS

Fig. 4 The heat capacity curves for reheating (10 K min–1) of an amorphous material
annealed at Ta=320 K characterized by the TNM parameters: ∆h*/R=100 kK,
ln(A/s–1)=–275, x=0.5, β=0.3. The annealing times are shown next to the curves.
The broken line corresponds to reheating without annealing

Fig. 5 The normalized heat capacity curves for unannealed amorphous material re-
heated after cooling (–10 K min–1), at different heating rates (shown next to the
curves). The TNM parameters are the same as in Fig. 2



Experimental techniques, history and development

Volume and length dilatometry

In volume dilatometry, the volume or length of an amorphous specimen which is sub-
jected to a temperature jump is measured as a function of time. Because the volume
changes due to structural relaxation are very small, accurate methods for detecting
volume changes are required. One of the most widely used techniques is mercury
dilatometry. This method is precise though time-consuming, because it requires care-
ful sample preparation, degassing and delicate skills. Another shortcomings of this
method are a restricted temperature range and the difficulty in its automation. Despite
these limitations it has been used extensively in the study structural relaxation mainly
in amorphous polymers. The precise experiments of Kovacs demonstrated all impor-
tant aspects of structural relaxation [3].

On the other hand, length dilatometry is one of the simplest experimental meth-
ods. It has been used in the study of structural relaxation of inorganic materials. The
pioneering dilatometric experiments made by Tool [6, 15, 16] on silicate glasses
clearly show the non-linear nature of structural relaxation. It was established that iso-
thermal annealing, following a temperature jump from an equilibrium state, could not
be described by a kinetic equation in which the relaxation time depended only on the
temperature. Tool assumed that τ depended also on the instantaneous state or struc-
ture of the amorphous material, which could be characterized by means of a fictive
temperature. This idea was one of the most important steps toward the understanding
and quantitative description of the structural relaxation process. Nevertheless, it was
shown later by Ritland [17], using his experiments on borosilicate crown glass, that
the fictive temperature concept cannot account for all phenomena observed when
more complicated thermal histories were applied. Kovacs [3] reported remarkable
dilatometric experiments of some organic polymers and suggested that structural re-
laxation involves multiple processes characterized by different relaxation times. Sim-
ilar results were obtained later by Spinner and Napolitano [18] and Macedo and
Napolitano [19].

Isothermal volume relaxation has been studied on many amorphous materials
[2, 3]. A typical volume relaxation isotherm is shown in Fig. 6 for As2Se3 glass
(points). Similar experimental data on amorphous polymers are usually interpreted
within the free-volume theory [3, 21], or compared on the basis of the volume relax-
ation rate βV. This parameter was introduced by Kovacs [3, 22] and its value has been
used to compare the kinetics of volume relaxation in amorphous polymers [20, 21]. It
is defined as the inflectional slope of the volume relaxation data, plotted on a loga-
rithmic time scale:

β δ φ δ
V V

Vd

d

d

d

d

d
=− ⋅ =− ≅−1 0

V

V

t t tlog log log
(10)

The TNM model has been tested in numerous studies of inorganic materials.
Much of this work has been reviewed by Mazurin [23]. The volume relaxation of a
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window glass was studied by Rekhson et al. [24]. The non-linearity parameter is
found indirectly by fitting Eqs (2)–(5) to experimental data for temperature jumps,
where Tf changes substantially. The curve in Fig. 6 has been calculated in this way for
the TNM parameters: ∆h*/R=35.9 kK, ln(A/s–1)= –73.3, x=0.51 and β=0.77. The ap-
parent activation energy is found from the temperature dependence of τ near equilib-
rium and the value is very similar to the activation energy for the temperature depend-
ence of viscous flow Eη/R=35.2 kK [25, 26]. The very good agreement of the volume
relaxation data (shown in Fig. 6) with the prediction of the phenomenological model
is not surprising, because, the data were taken not too far from equilibrium (∆T=
12.8 K). Scherer [27], however, in his remarkable paper, successfully described the
volume relaxation data of Hara and Suetoshi [28] within 100 K of Tg, using the
Adam–Gibbs formulation of non-linearity.

Differential scanning calorimetry

In comparison with dilatometric experiments, differential scanning calorimetry
(DSC) has been more frequently used for structural relaxation studies, both for amor-
phous polymers and for inorganic glasses. Probably the main reason for such popu-
larity is the easy availability of DSC equipment. Enthalpy lost during annealing is
usually recovered near Tg, producing the well-known overshoot. Early studies of this
phenomenon were made by Volkenstein and Sharonov [29], Foltz and McKinney
[30] and Petrie [31]. They used the area of the overshoot as a quantitative measure of
the enthalpy that had relaxed during annealing at Ta. In fact, the difference in areas
under the DSC curves for an annealed sample and the same sample for zero annealing
time is the enthalpy lost on annealing. For a sufficient annealing time at Ta, the
enthalpy relaxation will proceed to equilibrium, where the enthalpy is H∞ . The depar-
ture from equilibrium is defined as δH=H–H∞ . The initial departure from equilibrium
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Fig. 6 Isothermal volume relaxation data for amorphous As2Se3 subjected to a tempera-
ture jump from T0=446.4 K to T=433.6 K (points). The full line corresponds to
the best fit calculated for the TNM parameters: ∆h*/R=35.87 kK,
ln(A/s–1)= –73.3, x=0.51, β=0.77. The slope at the inflection point is shown by
the broken line



is δH

0 =∆Cp·∆T for an instantaneous quench, where ∆Cp is the difference between the
heat capacity of the equilibrium undercooled liquid and the amorphous solid. The
evolution of δH or Φ=δH/δH

0 with time would give the enthalpy relaxation data, analo-
gous to a volume contraction isotherm (Fig. 6). It is well know, however, that it is dif-
ficult to achieve an equilibrium enthalpy at about 20 K below Tg for polymers. For
this reason, some authors used the enthalpy loss during annealing, ∆H, referred to the
initial state rather than the final equilibrium state. Such data were published for many
amorphous polymers [32–35]. The enthalpy relaxation rate, βH, is defined as:

β δ δ
H H

Hd

d

d

d

d

d
=− ≅− ≅0 Φ ∆

log log logt t

H

t
(11)

This parameter has been used to compare the kinetics of enthalpy relaxation of
epoxy resins [36], polyesters [37] and chalcogenide glasses [38].

Considerably more attention has been devoted, however, to the analysis of heat
capacity data for various thermal histories. The TNM or AGH parameters can be cal-
culated using a curve fitting technique proposed by Moynihan et al. [5]. The literature
in this area is voluminous. An excellent review of enthalpy relaxation and recovery in
amorphous materials has been given by Hodge [11]. Figure 7 shows typical results
for As2Se3 glass for uniform cooling and reheating of an annealed and unannealed
sample (points). The full lines were calculated for the same set of TNM parameters:
∆h*/R=35.9 kK, ln(A/s–1)= –74.46, x=0.51 and β=0.70. These parameters are practi-
cally identical, within the limits of experimental errors, with the results of curve fit-
ting of isothermal dilatometric experiment (Section: Volume and length dilatometry).
Moynihan et al. [5] have found very similar parameters, x=0.49 and β=0.67, but
somewhat higher values of ∆h*/R=41.0 kK, ln(A/s–1)= –85.5.

The application of the KAHR model differs significantly from the curve fitting
approach. It is based on examining the peak temperature of the heat capacity over-
shoot as a function of the experimental conditions, in particular on the annealing time
or heating rate [39]. This so-called peak shift method has been successfully used in
analysis of some amorphous polymers [34–38].

Comparison of calorimetric and dilatometric studies

As anticipated above, the enthalpy relaxation rate βH and the volume relaxation rate
βV are frequently used to characterize the relaxation kinetics in various materials [21,
22, 33]. In 1972, Petrie [31] raised the question as to whether the relaxation rates of
different properties (volume, enthalpy, etc.) are identical or not. An attempt to com-
pare both volume and enthalpy relaxation rates, as defined by Eqs (10) and (11), for
various amorphous polymers, has been made by Hutchinson [20]. He concluded that
there was no simple correlation between volume and enthalpy relaxation for the ma-
terials analyzed. The main problem of such a comparison is that βV and βH are not
fully comparable quantities, because ∆α and ∆Cp may be different for many materi-
als. Observed changes in the relaxation rate can, therefore, be partially caused by
these differences, which obscures the real changes in structural relaxation kinetics. It
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has been shown recently [40, 41], that a convenient way to compare the volume and
enthalpy relaxation kinetics is the fictive relaxation rate, Rf, defined as the change of
the fictive temperature per decade of time:

R
T

t
f

f

i

d

d
=−







log

(12)

where the subscript i refers to the inflection point of the isothermal relaxation curve.
This parameter is very useful when the relaxation responses in different materials are
compared. The fictive relaxation rate for the volume relaxation rate can be written as
Rf=βV/∆α and, for the enthalpy relaxation, as Rf=βH/∆Cp. From Eq. (10) or Eq. (11) it
then follows that:

R T
t
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d

d
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It was found [40–42] that, for the phenomenological model of structural relax-
ation expressed by Eqs (2)–(4), the following equation can be expressed:
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2303
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σ (14)

where

σ ∂ τ
∂

=−









ln

Tf i

(15)

From Eqs (5), (7) and (15), the parameter, σ, for the TNM model can be ex-
pressed as σ≅ (1–x)θ. Similarly, from Eqs (8) and (15) the parameter, σ, for the AGH
model yields σ≅ T2B/[T(Tg–T2)

2]. In both cases the approximation Tf,i≅ Tg has been
used.

Equation (14) predicts that the fictive relaxation rate increases with the magni-
tude of the temperature jump ∆T. Similarly, one can expect an increasing Rf for a nar-
row distribution of relaxation times (i.e., β→1) [42]. The parameter σ corresponds to
the degree of non-linearity of the particular amorphous material. In a linear case
(σ=0), there is no structural contribution to the relaxation time and, therefore, the
maximum relaxation rate is expected: R f

max =0.847∆Tβ. Nevertheless, the parameter σ
is greater than zero for most amorphous materials, which means that they relax more
slowly. A remarkable feature of Eq. (14) is that it separates the contributions of non-
exponentiality (β) and non-linearity (σ). It has been believed that these two contribu-
tions are inextricably bound together by the reduced-time [20]. All these predictions
agree well with experimental observations [41, 42]. A very slow fictive relaxation
rate is observed for materials where σ>0.6 (vinylic polymers), which is nearly inde-
pendent of ∆T and β, and its value is mainly determined by the parameter σ. In con-
trast, relatively fast relaxation rates are observed for materials where σ<0.3 (inor-
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ganic glasses). Such behavior can be explained by the inverse correlation between the
parameters σ and β [42].

In assessing the applicability of the fictive relaxation rate, some problems re-
lated to a correct determination of the Rf and ∆T should be mentioned. Implicitly it is
assumed that Tf(0)=T0. In fact, it is rather difficult to change the temperature instanta-
neously (for polymer samples in particular) and there is always a finite initial time,
tini, needed to reach thermal equilibrium of a real sample [3, 20, 21]. If T0 is too high
(T0>>Tg), then the relaxation response during thermal equilibration may be very fast
and an important part of the relaxation takes place before tini is reached. In this case,
the first part of the relaxation curve might be truncated and Rf cannot be determined
correctly. Similarly, it seems to be more correct if ∆T is defined as the temperature
departure from the fictive temperature corresponding to tini, i.e. ∆T=Tf(tini)–T. The
value of Tf(tini)can be calculated using Eq. (4) for a particular set of TNM or AGH pa-
rameters. To simplify this problem, it is usually assumed [41, 42] that Tf(tini)≅ Tg pro-
vided that T0>Tg. On the other hand, if T0<Tg one can expect that the change in fictive
temperature immediately after the temperature jump is negligibly small.

In an ideal case, the Rf value can be obtained directly from the slope of the plot
of Tf vs. logt, according to Eq. (12). These data, however, are not always available. If
the Rf is determined from the slope of the isothermal relaxation curve δv(logt) or
δH(logt), it is important to make sure that it corresponds to a truly inflectional tangent
[42]. Another source of errors may come, in this case, from the temperature depend-
ence of ∆α and ∆Cp which is usually neglected. The error limits in Rf data, due to
these and other factors, was estimated to be about ±0.2 K for dilatometric, and ±0.4 K
for calorimetric data.

One can expect reasonable agreement between experimentally determined Rf

data and the values predicted by Eq. (14) for relaxation experiments not far from
equilibrium. For example, the fictive relaxation rate obtained from the inflectional
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Fig. 7 The reheating (10 K min–1) heat capacity data for amorphous As2Se3 obtained
after cooling (–5 K min–1) from equilibrium to 350 K (points): 1 – without an-
nealing, 2 – 5 h annealing at 446.2 K (this curve is shifted by 0.5 units for clar-
ity). The full lines correspond to the best fits calculated for the TNM parameters:
∆h*/R=35.9 kK, ln(A/s–1)= –74.46, x=0.51, β=0.70



slope of the volume relaxation data for As2Se3 glass, shown in Fig. 6, was found to be
Rf=6.3 K for ∆T=12.8 K. This is very close to the value 6.28 K calculated using
Eq. (14) for the TNM parameters reported above. The experimentally determined Rf

values obtained from calorimetric and dilatometric data (evaluated for ∆T≅ 10 K) are
shown in Table 1 for selected amorphous materials, in particular, for arsenic selenide
glass (As2Se3), amorphous selenium (Se), polystyrene (PS), polyvinyl acetate (PVA),
polycarbonate (PC), polymethyl methacrylate (PMMA) and polyvinylchloride
(PVC). These values are compared with the fictive relaxation rates calculated by us-
ing Eq. (14) for the parameters β and σ taken from previously reported enthalpy re-
laxation TNM fits (Table 1). It is seen that the Rf values for volume and enthalpy re-
laxations of these materials are practically identical, within the limits of experimental
errors specified above. A reasonable prediction of the fictive relaxation rate is thus
obtained for moderate ∆T. In contrast, the Rf values are underestimated for tempera-
ture departures far from equilibrium [42]. It is probable that these discrepancies come
from limitations of current phenomenological models.

Future considerations

The current phenomenological model, based on the non-exponential relaxation func-
tion and the reduced-time concept, gives a very good prediction of both volume and
enthalpy relaxations for moderate departures from equilibrium. So far, the most fre-
quently used formulation of non-linearity is based on the TNM approach, although it
is purely empirical and the corresponding parameters have no clear physical mean-
ing. From this point of view, the AGH formulation of non-linearity should be more
suitable because it corresponds to well known Vogel–Tamman–Fulcher equation in
equilibrium. Curiously, the AGH approach does not provide for a better fit of experi-
mental data, but it gives more meaningful parameters [11, 14]. These models treat the
relaxation response as thermorheologicaly simple implying that the shape of relax-
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Table 1 Measured and calculated values of the fictive relaxation rates for amorphous materials,
evaluated approximately 10 K below Tg. The parameters β and σ were taken from previ-
ously reported enthalpy relaxation TNM fits for organic polymers [14], amorphous Se
[38] and As2Se3 glass [5]

Material
Measured Rf/K

Calculated Rf/K β σ/K–1 Ref.
V H

As2Se3 4.7 – 4.55 0.67 0.10 [42, 25]

Se – 2.9 >2.80 >0.60 0.37 [38]

PS 2.4 2.4 2.31 0.47 0.47 [22, 43]

PVA 1.9 1.9 1.91 0.51 0.67 [3, 44]

PC 1.9 1.9 1.85 0.46 0.71 [45, 46]

PMMA 1.2 1.4 1.32 0.35 0.77 [47, 33]

PVC 0.8 1.0 0.78 0.23 1.63 [48, 49]



ation function is invariant with respect to temperature. Strictly speaking, this is true
only for a narrow temperature region. It was shown [50, 51], that the shapes of relax-
ation function and the spectrum of relaxation times broadened with decreasing tem-
perature. Therefore, it seems to be promissing to test thermorheologically complex
models [52], particularly for inorganic materials (chalcogenide, halogenide and sili-
cate glasses, etc.), where the relaxation responses can be measured far from equilib-
rium.

Volume and enthalpy relaxation responses can be quantitatively compared on
the basis of the fictive relaxation rate. From comparison of previously reported data,
it seems that the non-exponential and the non-linear contributions to the structural re-
laxation are mutually correlated [42]. It would be valuable to examine in more detail
the origin and physical meaning of such correlation.

It seems that values of both volume and enthalpy fictive relaxation rates are very
similar for many amorphous materials reported in the literature. The main problem of
such comparisons is that relaxation data need not correspond to the same material
measured under identical experimental conditions. To make sure whether the volume
and enthalpy relaxation rates are really identical, it is necessary to perform simulta-
neous experiments on the same material. Such studies have been performed by adia-
batic calorimetry [53, 54] at Osaka University and it was found that the volume and
enthalpy relaxation responses for polystyrene were identical within the limits of ex-
perimental errors [54]. Unfortunately, due to spontaneous temperature drift inherent
to adiabatic experiments, the concept of the fictive relaxation rate cannot be applied
in this case. It would be interesting, however, to analyze these data using the current
phenomenological model and to compare the calculated TNM or AGH parameters
with those reported for scanning calorimetry or dilatometric experiments.

* * *
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